

First Silicon Carbide characterization for relative dosimetry with flash-radiotherapy

<u>Giada Petringa</u>, Pablo Cirrone, Roberto Catalano, Salvatore Tudisco

Laboratori Nazionali del Sud, INFN

Second Exp Run Exp setup

Linearity with realesed dose and dose rate

PRAGUE project

A new generation of Silicon Carbide Silicon Carbide as dosimeter

- First Exp Run
 - CATANA Facilty
 - Radiation damage
 - Linearity with realesed dose and dose rate

Outline

A new generation of Silicon Carbide

SiCILIA - Silicon Carbide detectors for Intense Luminosity Investigations and Applications

New generation Old generation $2x2 mm^2$ 15x15 mm^2 10 um 43.7 um INFŃ stituto Nazionale di Fisica Nucleare **STMicroelectronics** ISTITUTO NAZIONALE DI FISICA NUCLEARE

The strategy of project was the use of material grown epitaxially as the active layer of detectors for the realization of ΔE detector(CVD process by means of gaseous precursos: Nitrogen for ntype doping and Trimethylaluminium for p-type doping), and the use of semi-insulating thick <u>4H-SiC</u> material for the *E* detector. The quality of 4H-SiC epitaxial material is nowadays very high considering the high progresses achieved in the last decades in the growth of material.

S. Tudisco et al. "Sicilia-silicon carbide detectors for intense luminosity investigations and applications", Sensors, 18:2289, 2018.

G. Petringa- INFN-LNS (Italy) - petringa@Ins.infn.it

Silicon Carbide as Dosimeter

4

Properties	Diamond	Silicon	4H-Silicon Carbide		Wide bandgap lower leakage
Energy Gap [eV]	5.45	1.12	3.26		current than silicon
Hole lifetime τ_p	10-9	2.5*10-3	6*10 ⁻⁷		Web sizes!
Relative dielectric constant $\epsilon_{\rm r}$	5.7	11.9	9.7		Diamond 16 e/um SiC 51 e/um
e-h pair energy (eV)	13	3.62	7.78		Si 89 e/um
Density (gr/cm ³)	3.52	2.33	3.21	K	=> more charge than diamond
Thermal conductivity (W/cm °C)	20	1.5	3-5		
Electron mobility [cm²/Vs]	1800-2200	1400-1500	800-1000		Fast
Hole mobility [cm²/Vs]	1200-1600	450-600	100-115		time
Breakdown electric field (MV/cm)	10	0.2-0.3	2.2-4.0		
Max working temperature (°C)	1100	300	1240		
Displacement [eV]	43	13-20	25		High Radiation hardness

The ideal device to perform the daily QA programs should have:

- good linearity against the
 released dose;
- high radiation hardness;
- dose rate and LET
 independent;
- tissue- equivalent;
- time-savings for PDD
 distribution measurements;

National patent N. Rif. 102018000007139 - G.A.P. Cirrone, S.Tudisco, G. Petringa and S.M.R Puglia

Experimental run @LNS-INFN (INFN) Stitute Mazienale di Fisica Nucleare

5

CATANA

Centro di AdroTerapia ed Applicazioni Nucleari Avanzate

Irradiation field: 5mm in diameter

Energy: 62 MeV proton beam Modulated and Pristine beam

Beam Current: 10^6-10^8 p/cm^2

Radiation Damage: after 3kGy

Linearity with released dose and dose-rate

Good linear behavior was observed in both cases

Normalized charge collected by the SiC as a function of the proton incidente dose-rate fixed at a released total dose of 5Gy

Dependence on particle LET

Exp. Run - Flash Condition

proton 62 MeV - Full Energy

Beam current: 1 - 50 nA

9

Shot time: 10ms - 200ms

Beam Collimator: 1x1cm²

Detector Collimator: 5x5 mm²

Detector (ST): 10um - 1x1cm²

Linearity with released dose and dose-rate

PRAGUE detector

PRAGUE Proton RAnGe measure Using silicon Carbide

G. Petringa - INFN-LNS (Italy) - giada.petringa@Ins.infn.it

G. Petringa - INFN-LNS (Italy) - giada.petringa@Ins.infn.it

Feasibility Study

5

Geant4 Simulations

62 MeV of incident protons Experimental room: CATANA facility 550um PMMA layers

> circular beam spot gaussian distribution (**σ**=5 mm) FWHM variation: 30%

Thanks for listening

G. Petringa - INFN-LNS (Italy) - giada.petringa@Ins.infn.it