Spectral and spatial shaping of laser-driven proton beams using a pulsed high-field magnet beamline <u>F.-E. Brack^{1,2}, F. Kroll¹, L. Gaus^{1,2}, C. Bernert^{1,2}, E. Beyreuther^{1,3}, T. Cowan^{1,2}, L. Karsch^{1,3}, S. Kraft¹, L. Kunz-Schughart³, E. Lessmann¹, J. Metzkes-Ng¹, J. Pawelke^{1,3}, M. Rehwald^{1,2}, H.-P. Schlenvoigt¹, U. Schramm^{1,2}, M. Sobiella¹, E. Rita Szabo⁴, T. Ziegler^{1,2}, and K. Zeil¹</u>

Laser-driven dose delivery for 3D in vivo irradiation

Mouse model Beyreuther et al 2017 PLOS ONE 12

- 4 ± 0.2 Gy homogeneous 3D dose profile (SOBP, 5x5x5 mm³) with mean dose rates in the order of 1 Gy/min
 - proton energy of 25 40 MeV
 - < 10% dose homogeneity laterally and in depth</p>
 - < 10% precise total dose value delivery</p>
 - < 10% absolute dosimetry (on- and offline)</p>

Requested output

Dose homogeneous within 5×5×5 mm³

Laser-driven dose delivery system

Florian-Emanuel Brack | f.brack@hzdr.de

BLIN4 online 2020

Pulsed high field magnets

Solenoid

p+

B-field: 1 T
$$\rightarrow$$
 10 T

focal length
$$f_{\rm S} = \frac{4p^2}{q^2 B^2 l}$$
100

- Chromatic focusing device
 - Energy selection via input current
 - Beam guiding
 - collimation of 70 MeV (scalable)
- 40 mm open aperture
 - high transmission efficiency due to high angular acceptance
- several years operation (1000+ pulses)
- Cooled solenoid → higher rep rates possible (1 Hz pulse generator finished soon)

Solenoids well suitable for broad energy range & large angular distribution of TNSA protons

Beamline setup for 3D in vivo irradiation

Spectral shaping of laser-driven proton beams

Dual solenoid setup focuses protons of two independent energies

Spectral shaping to homogeneous depth dose distribution via solenoid currents

Dose homogeneous within 5x5x5 mm³

Depth

Lateral shaping of laser-driven proton beams

- ▲ After spectral homogenization → lateral homogenization
- focus in front of irradiation site and/or aperture at P3 and/or energy selecting aperture at P4
- Introduce scatter foil at P4 and/or at vacuum exit window

3D dose delivery for radiobiological experiments

Single shot high dose

Study high dose (rate) effects e.g.
FLASH, ZF embryos, spheroids
> 10 Gy in 3x3x3 mm³
Tumour spheroids

Brack et al., Sci Rep 10, 9118 (2020)

Zebrafish embryo (*in-vivo*)

First feasability study with too low dose
→ new campaign with higher dose planned

Florian-Emanuel Brack | f.brack@hzdr.de

BLIN4 online 2020

Upcoming mouse model irradiation

Mouse irradiation campaign starts this week!

Fulfilled high demands of mouse model "offline" \rightarrow now (online) dosimetry for irradiation needed!

Thanks for your attention!

Feel free to send questions to

f.brack@hzdr.de