Multipinhole Thomson Parabola arrangement for ion spectroscopy

Sargis Ter-Avetisyan

Marco Borghesi, Matthew Zepf, Rajendra Prasad, Domenico Doria
The Queen's University of Belfast, UK
M. Schnürer, P.V. Nickles

Max-Born-Institute, Berlin, Germany

outline

- Thomson spectrometer - charged particle analyser
- Thomson spectrometer with high spatial resolution
- Time-resolving Thomson spectrometer
- Multipinhole Thomson spectrometer

Thomson spectrometer

Time integrated spectrogram is displayed on a two dimensional space

One can notice, that in the spectrogram only parabola shaped lines are used in the space.

The unused space between the lines can be utilized for the display of spatial or temporal information.
absolute calibrated MCP detectors makes the spectrometer setup unique for quantitative analyses of ion spectra See talk by Rajendra Prasad

10 nm C, laser energy E~ 7J, 50 fs

Ion spectra (Thomson parabola)

Thomson spectrometer with high spatial resolution

Thomson spectrometer in a 1:1 imaging

The spatial resolution:

$$
\Delta l=\frac{a+b}{b} d
$$

$$
a=5 \mathrm{~cm}, b=75 \mathrm{~cm}, \mathrm{~d}=30 \mu \mathrm{~m}
$$

$$
\Delta l=30 \mu m
$$

Thomson spectrometer in a 1:15 imaging

\rightarrow Strong spatial fluctuations of the proton emission area.

Spatial fluctuations of proton source

Thomson spectrometer with two entrance pinholes.

The source emission coordinate as function of proton energy

remarkable variations of the emission direction of proton beams

energy, MeV

Time-resolving Thomson spectrometer

measurement of arrival time and velocity - not loosing the spectral information

Ion emission snap shots

For a pulsed ion source that produces ions whose energy is a function of time, a Thomson spectrometer with a pulsed electric field can be used to deduce time information

Proton source Tomography:

Tomographic reconstruction of laser driven proton source

Tomography is a imaging method. It is imaging by sections or sectioning.

Laser
$30 \mu \mathrm{~m}$ pinholes $2 \times 10^{19} \mathrm{~W} / \mathrm{cm}^{2}$, 40 fs , contrast $<10^{-8}$
method allow to define spatial and momentum distribution of emitted ions

Tomographic image of the source, energy dispersed

In the ideal case each proton trace should originate from a point which corresponds to the axis of the spectrometer.
If there is a tilt of the proton trace from this axis, the coordinate of the protons differ from spectrometer axis

Correlation of proton emission coordinat, emission angle and energy

width of the source (Δx) is the exponential function of the proton energies:

$$
\Delta x \sim E^{-0.5}
$$

low energy - smaller emission angle, high energy - large emission angle

Trajectories of accelerated protons

Reconstructed proton trajectories as they are accelerated from the target
virtual source proton beam-lets

higher the proton energy - smaller the source size but bigger the emission angle is
propagation of protons is ballistic

virtual ion source positions in front of the target for different proton energies

Tomographic image of the source energy dispersed

The virtual ion source

target front surface $\longleftarrow \longrightarrow$ target rear surface

virtual-source target surface distance (mm)

Tomographic image of the source, energy dispersed

The virtual ion source

The virtual ion source positions in front of the target for different proton energies

The laser driven ion source is a highly organized dynamic system.
It relies on a well defined interrelation between spatial and momentum distributions of emitted ions.

The protons are emerging from a circular symmetric source and each source point behaves similar:
source point from where the proton with E_{i} energy is accelerated with $\theta_{E i}$ angle (normal to the target surface) becomes a source point for a proton with $E_{J}<E_{i}$ energy emitted with $\theta_{E J}<\theta_{E i}$ angle.

