

1

Calibration of MCP and image plates (IP) for multi-MeV ion spectroscopy

Rajendra Prasad

The Queen's University Belfast

S. Ter- Avetisyan, D. Doria, K. Quinn, L. Romagnani, S. Kar, M. Zepf, M. Borghesi

School of Mathematics and Physics, Queen's University Belfast, Belfast, UK

C. Brenner, P. Foster, P. Gallegos, J. Green , D. Neely,

Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facility Council, Oxfordshire, UK

D. Carroll, O. Tresca, P. McKenna

SUPA, Department of Physics, University of Strathclyde, Glasgow, UK

N. Dover, C. Palmer, M. Streeter, J. Schreiber, Z. Najmudin,

The Blackett Laboratory, Imperial College London, UK

Outlines:

- Protons/ ions beam in laser plasma interaction
- Detectors
- •In situ calibration (MCP/ Image plate)
- •Response to higher energy ions
- Summary

Proton/ion beam generation in laser solid interaction

•Target normal sheath acceleration- TNSA

$$E \sim \frac{kT_e}{e\lambda_D}$$

•Radiation Pressure Acceleration-RPA

Acceleration of foil as a whole

Thomson Parabola spectrometer as a charge particle analyser

Lorentz Force $\vec{F}(+\hat{y}) = q(\vec{v}(\hat{z}) \times \vec{B}(\hat{x}))$ Electrostatic Force $\vec{F} = q\vec{E}(\hat{x})$

(1) Radio-chromic Film (RCF)

(2) CR-39 Track Detectors

(3) Image Plates (IP)

Clear plastic C₁₂H₁₈O₇

absolute particle detection

sensitive, reusable

Micro Channel Plate (MCP) Detector

Single stage MCP

- •Typical gain at 1 kV: 10⁴
- (10⁶/10⁷ in two/ three stage MCP)
- •Dynamic range: 10³
- •Time response: order of ns
- Spatial resolution: 6- 25 µm
- Online data measurement
- Single particle detection

>Ion tracks on phosphor screen coupled to MCP

	МСР	RCF	CR-39	Image plate
rep rate	kHz time response~ms (due to phosphor screen)	single shot	single shot	single shot
spatial resolution	15 μm depends on channel diameter, pitch	~ *µm	*µm depends on energy and etching time	5 *µm
sensitivity	single particle	10 ⁴ - 10 ⁶ protons/MeV/sr	single particle	single particle
dynamic range	10 ³ - 10 ⁴	10 ² (10 - 400 Gy)	10 - 100	10 ⁴ - 10 ⁵
online acquisition	Y	No	No	No
detection	e⁻, ions, X-ray, n (solar blind)	e ⁻ , protons	ions, H+ (>50 keV)	e ⁻ , ions, X-ray, n, γ

*However the actual resolution depends on scanner (normally 25-50 µm)

Calibration:

- Absolute number of accelerated particles
- Spectra in absolute term
- Conversion efficiency
- Response of the detectors

>Set up for Calibration

Queen's University Belfast

•Experimental data for protons up to 3 MeV and for Carbons up to 16 MeV ¹³

Theoretical Model

(dE/dx)_e: electronic stopping power

z: penetration depth

- •A monte carlo simulation has been performed to get the most probable gain
- •To get the dE/dx we used the SRIM program
- Angle θ has been calculated from the geometry of the experiment

Calibrated spectra

Image Plate Calibration

Structure of image plate

BAS-III BAS-IIIS

Imaging Plate Type

BAS-MP 2040

BAS-MP 2040 S

BAS-SR 2040

BAS-TR 2040

BAS-TR 2040S

BAS-MS 2040

BAS-ND 2040

Layer	Weight (g/m²)	Depth (microns)
Back	27 - 670	28 - 290
Base	270 - 445	190 - 320
Undercoat	14 - 25	10 - 20
Phosphor	140 - 575	50 - 180
Protective Coat	10 - 16	6 - 11
Total	960 - 1720	480 - 810

Protective Coat
Phosphor
Undercoat
Base
Back

BAS-TR2040

>Working principle

BaFBr_{0.85}: $I_{0.15} \xrightarrow{1:10^4 \text{ doping}}$ BaFBr_{0.85}: $Eu^{2+}_{0.15}$ Polycrystal bound by organic agent

In the region of 300 to 500 nm, the photomultiplier works with the highest efficiency.

Calibration

Scanner settings:

 $\begin{array}{rrrr} R= & 5^2 \hbox{-} 200^2 \, um^2 \\ S= & 1000 \hbox{-} 10000 \\ L= & 4,5 \\ \text{bit}= & 16 \end{array}$

A Mancic et al Rev. Sci. Instrum. 79, 073301 (2008)

>Summary

- •The experimental calibration data has been shown for protons up to 3 MeV and for C⁶⁺ up to 16 MeV
- •The response has been extended to higher energies for protons and C⁶⁺
- •MCP response to higher energies changes by a factor of ~2 for C⁶⁺ ions from 20 MeV to 240 MeV
- •The response of image plate appears to be max at~27 MeV
- •The response of image plate to higher energy is being modelled

