Particle detection in laser-plasma

 ion acceleration
A. Flacco, F. Sylla, M.Veltcheva, S. Kahaly, V. Malka

Laboratoire d'Optique Appliquée
 Palaiseau, France

Source de Particules par Laser

Outline

- Experimental activity in LOA: present and future
- Detecting laser-accelerated particles
- Activities on ion detectors: MCP/TP, problems, calibration, analysis
- Conclusions

Salle Jaune multi-terawatt laser source (present)

$$
\begin{aligned}
& \tau=30 \mathrm{fs} \\
& E_{L}=0.8 \mathrm{~J} \\
& I_{0}=4 \times 10^{19} \mathrm{~W} / \mathrm{cm}^{2}
\end{aligned}
$$

XPW: incoherent pedestal level is strongly reduced. Cleaner interaction conditions at high repetition rate.

Improved stability of the proton kinetic energy: 4\% rms!

Near future in LOA

Two ongoing projects foresee power improvements in LOA:

ERC-Paris

Upgrade the Salle Jaune laser facility to 200TW (upgrade starts 2011)

SAPHIR
Source of High Intensity Laser Accelerated Protons for Radiotherapy

Collaborative project between multiple partners from research and industry. Timeline (i) the installation of a 200TW laser system in LOA, (ii) its upgrade to 500TW and 1PW in 5 years. Aims: be able to define a prototype for a laser based proton accelerator. T_{0} : 2010!

New challenges for ion detection!
(concept, design, implementation)

(protons)

High intensity laser-plasma interaction: extremely rich set of products:

Photons (X, γ)
Harmonics
Several Ion Species
Electrons
Molecules $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}{ }^{+}, \mathrm{SiO}_{2}{ }^{+}\right.$)
Atoms
Laser!

Different charge states

Extended masses and velocities range

Different interaction with materials (unwanted interactions, radioprotection)

- Continuous spectra: necessity of spectral analysis
- Wide angle emission: tradeoff between spatial and spectral measurements

Most known radiation sensitive devices/materials are:

- Dose integrators (CR39, RCF, image plates)
- Scintillating materials (inorganic or organic)
- Micro-Channel plates

Selection of species
Continuous spectrum resolution (fine effects)

Real time!
Parasites signals

Thomson Parabola with Microchannel Plate

The main proton/ion diagnostic in LOA: MCP/TP

Thomson Parabola:

- standard configuration: permits separation of all ion species, gets rid of many "unwanted" particles
- spectral information, no spatial information
- very small aperture

MicroChannel Plate:

- very sensitive (secondary particles!), read in real time, fast
- cannot be used for imaging (sensible to almost everything)
- experimentally demanding (vacuum, HV, price)

1: Thomson Parabola Design

Magnetic field:

- stackable magnets: lower field magnets are preferred (same mount from 80 mT to 0.7 T)
- B can increase along z
- field is mapped by $1 \mathrm{~mm}^{2}$ Hall probe to run simulations and analyze spectra

Developements:

- Ad-hoc numerical solutions for design, realization and exploitation of the parabola

Electric field:

- better resolution with external, wide plates
- $2 m m$ thick copper gave the best results
- precision: up to isothopes discrimination!!

2: TP track analysis: ImagLab

C++/Qt software solution for complete TP management:

- direct control of acquisition CCD camera (Andor or PCO)
- online tracking (RK8) of test particles through the TP setup (with relativistic corrections for electrons)
- complex setups possible (multiple E, B fields, 3D numerical maps)
- batch analysis of multiple tracks at same time
- supports absolute calibration (MCP, camera)
- scriptable

ImagLab: workflow

New TP
 configuration

Online/Offline

Data Analysis

3: MCP structure

Calibrate?

MCP Calibration

Calibration:

$$
n_{p h}=\eta(m, q, K) \cdot n_{p}
$$

channel plate:

- MCP is a set of fused macro-fibers on hex geometry. Honeycomb periodicity: ~700 mm (typ)
- Variable thickness and conversion efficiency can be observed along junctions
- Open Area Ratio (OAR, typ > 56\%): channel surface over bulk surface, NOT constant (variable cross section). Proper to each plate.
- Cleanliness (water) can affect amplification: pumping time?

image formation on the phosphor:

- presence/absence of the amplifier ring in Chevron stack
- phosphor voltage affects gain and spatial resolution
- image transport: phosphor can be strongly polychromatic. Presence/absence of back-reflector.
care should be taken when observing details on MCP images!

MCP surface details (AFM)

Color scale: red to blue $\sim 0.1 \mu \mathrm{~m}$

MCP Honey Comb

The honeycomb structure becomes evident in particular irradiation conditions. Nevertheless:

- the shown images were far from MCP saturation
- in the imaged conditions, the spatial scale is comparable to the observed TP track

MCP Calibration

Geant4 simulation

Correlate number of emitted photons against MeV of deposited dose for protons and alpha particles up to 3 MeV (Bragg peak still inside the detector)

- Continuous or bursted ion beam up to $10^{12} \mathrm{p} / \mathrm{sec}$
- Measure of the backscattered number of particles
- Measure the behavior in (i) current, (ii) energy, (iii) position (OAR) for different MCP parameters
- Correlation between channel angle and incoming particle angle

MCP Calibration II

Preparation of the experiment: Geant4 simulations

Needed parameters:

- particle surface density $\left(\sigma_{p}\right)$
- particle kinetic energy varying MCP distance, particle energy and diffuser thickness

Searched conditions on σ_{p} over MCP radius:

- almost constant
- two orders of magnitude

Spectrum increase is taken in account as error on the measurement.
paramètres: $\mathrm{K}_{\text {in }}=2.50 \mathrm{MeV} \quad e=7.0 \mathrm{um} \quad \mathrm{d}=100.0 \mathrm{~cm} \quad \mathrm{~N}_{\mathrm{in}}=600000$ pas $=0.10 \quad$ MYLAR grandeurs caractéristiques: taux $=0.891 \quad r_{\text {max }}=21.18 \mathrm{~mm} \quad$ err ${ }_{K}=0.0286$

Conclusions

- Products from laser-plasma interaction are various, not a single detection solution.
- Real time spectral measurements: we found MCP/TP to work best (with caveats)
- Important activity on design, characterization, analysis
- Necessity: better understand the detector to be able to calibrate it

Thank you!

Laser effects on CR39

- The impact appear only AFTER etching (not ablation)
- Initial part of the pit evolution during etching: comparable to ion signal
- Threshold around $10^{11} \mathrm{~W} / \mathrm{cm}^{2}$ at 30 fs (SJ: $\mathrm{z}=5 \mathrm{~cm}!$!)
- Appears more easily on the BACK surface of the CR39 foil (always mark sides!)
- May show purely optical effects (e.g. interference patterns)

