

MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Munich-Centre for Advanced Photonics

Radiation therapy with laser-driven accelerated particle beams: physical dosimetry and spatial dose distribution

Sabine Reinhardt

Overview

- Calibration of Imaging Plates (IP) for laser-acceleration experiments
- Gafchromic EBT2 film for biological experiments
- Test of pixeldetectors for laser driven accelerated (LDA) ions
- Conclusion and outlook

MAXIMILIANS-UNIVERSITÄT MÜNCHEN MUNI

Munich-Centre for Advanced Photonics

Imaging plate (IP)

- Detection based on *photostimulable luminescence*
- large dynamic range
- erasable by visible light
- special read out scanner system

Calibration at the MLL Tandem accelerator

- Image Plate Fujiffilm BAS-TR 2025
 - active layer : 50 μm phosphor (BaFBr_{0.85}I_{0.15}:Eu²⁺)
 - no protection layer
- Image plate reader: FLA 7000
 - fast read-out : 24 x 25 cm² → 2 min (@ 50 µm pixel size)
- Calibration and investigation of fading behaviour in proton beam
 - calibration:
 - energy range [MeV]: 8 20
 - Fluence range [p/cm²] : 10⁴, 10⁵, 10⁶
 - fading:

12 MeV, 10⁵ p/cm²

scanner unit = PSL
<u>(p</u>hoto<u>s</u>timulable <u>l</u>uminescence -value)

$$PSL = \left(\frac{pix}{100}\right)^2 X \frac{4000}{S} \times 10^{L \left(\frac{QL}{G} - 0.5\right)}$$

L, S, G, pix: scanner parameter, QL: pixelvalue

Instrumentation for Diagnostics and Control of Laser-Accelerated Proton (Ion) Beams

Signal fading of IP

- at least 2 fading channels (fast < 60 min)</p>
- fading curve fitted by 2 decaying exponential functions

 $\frac{PSL(t)}{PSL_0(t_0)} = a_0 \cdot \exp\left(-\frac{\ln 2}{a_1} \cdot t\right) + a_2 \cdot \exp\left(-\frac{\ln 2}{a_3} \cdot t\right)$

Calibration at the MLL Tandem accelerator

■ SIMNRA 6.04 simulation → simulation of energy loss in active layer

■ E > 8 MeV:

- no LET dependence observed
- PSL-signal proportional energy loss
- linear dose response (D < 50 mGy)

13.08.2010

Signal decrease due to multiple scanning

Instrumentation for Diagnostics and Control of Laser-Accelerated Proton (Ion) Beams

Gafchromic EBT2 films

- Gafchromic EBT 2 films
 - self-developing
 - polymerization → blue colour
 - read-out with *flatbed scanner*
 - analysis of red colour channel
 → dose range 0.2 10 Gy
- Epson Perfection V 700 Photo
 - 1200 dpi resolution
 - 16 bit / colour channel
 - landscape orientation
 - read-out at earliest 40 h after irradiation

pixel value (pv) converted to netOD:

$$netOD = \log\left(\frac{pv_{bg}}{pv_{irr}}\right)$$

Calibration at the MLL Tandem accelerator

Film - dosimetry in mouse experiment

- Difference in relative biological effectiveness due to irradiation mode? (continuous vs. pulsed)
 - \rightarrow measure delay in tumour growth after irradiation
- 23 MeV p: < 6 mm range in water
- spatial dose distribution required
 - → Gafchromic EBT2 films for fluence measurement
- *PTV dose:* 20 Gy, using 5 fluences
 → dose range on film: 0.54 Gy 4.00 Gy

Film dosimetry in mouse irradiation

irradiation mode	mean dose [Gy]	deviation to target dose (20 Gy) [%]
pulsed (12 mice)	17.30 +/- 0.43	13.5 %
continuous (11 mice)	19.21 +/- 0.83	4,1 %

13.08.2010

Test of pixel detectors as LDA - detectors

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN MUNICHEN

Detectors in Radiation therapy - state of the art

- Requirements for dose monitors / dosemeters
 - high dose accuracy (+/- 3 %)
 - real time measurement and fast response
 - no LET dependence
 - no change in beam quality
- IAEA TRS 398

"Absorbed Dose Determination in External Beam Therapy"

- p: 50 MeV 250 MeV
- C: 100 MeV/u 450 MeV/u
- Standard based on absorbed dose to water measured by ionisation chamber (IC)

Ionisation chamber in water phantom

Consequences in ion beam therapy (IBT) due to acceleration mechanism

LDA - ions for IBT:

fs - laser pulse → intense ns - ion pulses

	conventional accelerator	laser - driven accelerator
particles per fraction	10 ⁷ - 10 ⁹ particles / cm ²	
T _{irr} / voxel	~ 100 ms	~ ns
dose rate	~ Gy / s	10 ⁸ Gy /s
dose accuracy	+/- 3%	

New questions

- biological response
- treatment modality/planning
- dosimetry
- → online detectors?
- → new dosimetry standard for pulsed ion beams?

Required dose accuracy makes problem even more sophisticated !

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Munich-Centre for Advanced Photonics

What about standard dosimetry?

	conventional acceler	ator laser - driven accelerator
dose rate	~ Gy / s	10 ⁹ Gy /s
LDA -Detectors Ionisation chambers	→ N → S	O ONLINE INFORMATION ATURATION PROBLEMS

→ different kind of online - detector required

What about a pixeldetector as dose monitor?

Kappa DX4 1020 - An "off - the - shelf" camera system

CCD camera Kappa DX4 1020

- Kodak Interline Transfer CCD KAI 1020
- 1004 x 1004 pixel with 7,4 μm pitch
- 16 bit digitalisation
- sensor mounted on separate board
- *but* optimized for optical applications

Test of system at MLL Tandem accelerator in Garching

- 20 MeV p @ microbeam facility SNAKE
 - single ion irradiation
 - few µm scanning resolution
- 10 MeV p @ I 40°
 - continuous irradiation

20 MeV p, microbeam irradiation @ SNAKE

- 1 *p / frame*
- only low statistic
- scan in x and y direction
- blooming in horizontal direction

cluster = adjacent pixels with signal above thresolds

10 MeV p, continuous irradiation @ I - 40°

Clustersize high statistic good linearity with exposure time 20 blooming in horizontal direction number of events 15 Clustersum number of events 7000 Entries 348545 6000 5000 2 3 clustersize 4000 3000 -3000 2000 Events / frame 2000 -1000 1000 10 20 50 60 30 40 ADU-sum of event 0 -100 200 0

exposure time camera [ms]

Limits of commercially available detector systems

- Promising performance with respect to saturation level
- potential problems due to optimisation for optical applications
 - growing distribution of interline CCDs
 → problems with vertical shift register?
 - depletion thickness ~ few µm
 → energy loss and straggling comparable
 - limited read-out possibilities

Test of more advanced non - optical system like e.g. Medipix (CERN) would be interesting!

schematic scetch of interline CCD:

New detector systems: Mesytec CCD and Medipix - Chip

Mesytec - CCD

- CCD based system from MBI Berlin
- System *developed for LDA- ion pulse detection* but has never been tested in a proton beam
- RadEye2 sensor from Rad-icon
 - 48 x 48 µm² pixel size
 - 1024 x 1024 pixel
 - saturation energy 7.2 MeV
- Medipix Chip
 - read- out chip developed at CERN
 - active pixel sensor (APS)
 - 50 x 50 μm² pixel size
 - 256 x 256 pixel
 - different detectors can be bump bonded to chip
 - different read out modes

Conclusion and Outlook

- Imaging Plate
 - *linear dose dependence* for doses < 50 mGy
 - further *calibration for different type of IP and FLA 5100*-IP- reader in November 2010
- EBT 2
 - dosimetry in mouse experiment successfully accomplished
 - \rightarrow deviation pulsed / continuous mode has to be investigated further
- Pixeldetectors
 - First tests with commercially available pixeldetector show promising results
 - \rightarrow response to pulsed ion beam still has to be tested
 - → optimisation for optical applications potentially problematic for charged particle detection
 - Further tests of detector response to single proton events as well as intense proton pulses using different systems
 - Kappa DX4 1020 (pulsed)
 - Mesytec CCD
- (single & pulsed)
- Medipix Chip
- (single & pulsed)

in collaboration with MBI Berlin in collaboration with UTEF CVUT Prague

Thank you for your attention!

13.08.2010

Instrumentation for Diagnostics and Control of Laser-Accelerated Proton (Ion) Beams