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Overview

•Ultrafast sources of laser driven radiation

•Optical streaking technique

•Pulsed radiolysis in SiO2: The role of dimensionality

•Pulsed radiolysis in H2O: Solvated electron dynamics on ultrafast 
timescales
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Laser driven ion accelerators – a novel source for ultrafast physics

H. Schwoerer, “Laser-plasma acceleration of quasi-
monoenergetic protons from microstructured
targets”, Nature, 439, 445-448, 2006

Traget Normal Sheath Acceleration, TNSA 

PIC simulation: 
Broadband energy spectrum
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By slowing and stopping lower energy 
components of the ion energy spectrum the 
ultrafast pulse duration can be recovered to 

permit ultrafast pulsed radiolysis
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Critically, ultrafast 
pulse duration is 

preserved in narrow 
energy bandwidths of 

the TNSA spectrum
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Transparent Dielectrics (or aqueous solutions)

Standard pump probe approach…….
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Observing ultrafast proton interactions in a single shot

Schematic
(not to scale)

Probe ion induced 
a) opacity (free electrons 
in conduction)
b) Photabsoption bands
c) Polaristation effects
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………Ultrafast optical streaking for proton matter interactions 

Sample can be 
Trasparent Dielectric

H2O

Excitation/ionisation to allow free-
free absorption of probe photons

Chirped pulse optical streaking
Example of normalised transient 

opacity data (SiO2)

Dromey et al. “Picosecond metrology of laser-driven proton bursts”, Nat. Comms, 7, 10642 (2016)

Target:
H2O, biological samples

Collimating slit

Chirped probe
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Dromey et al. “Picosecond metrology of laser-driven proton bursts”, Nat. Comms, 2016

Results: Optical streak of opacity in SiO2

TNSA spectrum
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Revealing ultrafast dynamics
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Dromey et al. “Picosecond metrology of laser-driven proton bursts”, Nat. Comms, 7, 10642 (2016)

Experimental Data Modelling

Reveals ultrafast lifetime of electrons 
in the conduction band < 0.5 ps

SPIE Prague, 2nd April 2019



b.dromey@qub.ac.uk

<1019 cm-3

>1020 cm-3

Transition from free 
electron gas to 
electron hole plasma

Exciton  (correlated electron hole pair) 

formation provides a rapid decay channel

 electron is no longer ‘free’

Slow decay

Rapid decay

D. Grojo “Time-Evolution of Carriers after Multiphoton
Ionization of Bulk Dielectrics” ” IThI3, 2009 
OSA/CLEO/IQEC 2009

>1020 cm-3

<1019 cm-3

Conduction band electron component exists for >100 ps

Audebert et al., Space-Time Observation of an 
Electron Gas in SiO2, PRL 73, 1990 (1994)

“Two speed decay”
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Temporal response of SiO2 to ionisation – Exciton formation 
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Nanoscale tracks of ion damage from a 
combination of TRIM calculations (trajectories) 
and FLUKA simulations (track size) for protons 
in SiO2

Results suggests near solid density 
ionisation along each track >1021 cm-3

Electron – Hole plasma conditions  not suitable for exciton formation

Why are we seeing an ultrafast response in experiments?

Flux: 50-100 µm-2 – same 
as the experimental 
conditions

Nanostructured dose distribution of protons in SiO2
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Such evolution would be consistent 
with predictions from Monte Carlo 
simulations for electron diffusivity

Osmani et al.  e-J. Surf. Sci. 
Nanotech. Vol. 8 (2010) 278-282

>1022 cm-3

~1018 cm-3

This only the instantaneous picture….. Nanometre scale energy density gradients

3-D

2-D 
transverse 
cross 
section

Hypothesis – rapid evolution of localised free density

SPIE Prague, 2nd April 2019



lo
g

1
0

(n
e )

b.dromey@qub.ac.uk

lo
g

1
0

(n
e )

After approx. 200 fs near 
uniform conditions with 

~1019 cm-3

Diffusivity – 10 -100 cm2/s
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How can we study 
this quantitatively?

Implied rapid evolution of density (simplified)
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Tortuous nanostructured matrix of SiO22-4 nm structures

20 - 30 nm voids

2-4 nm 
particles 
of SiO2

SiO2 Aerogel – reduced dimensionality
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3D Approx. 1D 

2.6 gcm-3 .26 gcm-3 0.8 gcm-3

(schematic, for illustrative purposes only)

SiO2 Aerogel – reducing dimensionality
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Results: Optical streak of opacity in ~ 0.26 gcm-3 Aerogel

TNSA ion pulse

Yields direct information about the 
absolute arrival time of various species

Prompt X-rays/Fast electron pulse – gives very accurate to
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Time from To (ps)
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3.5 ps FWHM
< 0.5 ps decay time constant

Nearly 200 ps decay constant

Clear effect of nanostructure

Direct comparison with solid density SiO2

Streaks on the 
same timescales
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Scaling with average density/dimensionality
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• Possible to directly measure proton damage in materials 
(here transparent dielectrics) on ultrafast timescales

• In bulk SiO2 this allows direct measurement of the proton 
pulse duration. 

• Nonlinear variation in recovery times for changing the 
dimensionality of the interaction for nanostructured SiO2

• Clear conclusion: Reduced dimensionality inhibits the 
exciton pathway

• Next step: Absolutely verify scaling with average 
density/dimensionality and underlying physics

Summary SiO2
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Addressing the rising incidence of cancer 

ULTIMATE GOAL - Improve long term prospects for young patients by reducing damage near the tumor site

Increasing cancer rates, in particular 
amongst young people (33% since 1993)

http://www.cancerresearchuk.org/

1) Dose escalation 
and/or

2) Highly targeted dose for 
radiosensitive treatment sites

Ions -
Characteristic 

Bragg peak

Dose vs Depth curves

Electrons 

X-rays

Protons

Rivista trimestrale dell’Istituto Nazionale di Fisica Nucleare
http://www.roma1.infn.it/rog/astone/didattica/asimmetrie6.pdf

This is driving major facility 
development and proliferation

https://www.klinikum.uni-heidelberg.de/
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Ultrafast ion interactions in H2O – nascent chemistry

This timeframe has been inaccessible to experimental observation to date 

seeds

This prevents the benchmarking of ab initio, or “bottom up”, numerical models

Baldacchino, G., ”Pulse radiolysis in water with heavy-ion beams. A short review” Radiat. Phys. Chem. 77, 1218– 1223 (2008) 

This in turn prevents unlocking the predictive power of these models

e-
aq is a powerful 

reducing agent for 
the cytotoxic HO·
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Solvated Electron 
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Studying the solvation process using ions
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Observing ultrafast proton interactions in a single shot

Schematic
(not to scale)

Probe ion induced 
a) opacity (free electrons 
in conduction)
b) Photabsoption bands
c) Polaristation effects
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Full modelling of interaction – Geant 4

d2(T)
dt2

d(T)
dt
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Experimental results optical streak of solvated electron dynamics
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Experimental results optical streak of solvated electron dynamics
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Mismatch between experiment and theory 

Time from T0=0 (ps)
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Proton induced dynamics in water – nanocavitation?

Molecular dynamics (MD) simulations 
indicate a marked difference in H2O 
response for increasing linear energy 
transfer (LET)  

Simulation input by P. 
deVera and F. Currell, 
Univ. of Manchester
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Ultrafast implications for nascent water chemistry?

This timeframe has been inaccessible to experimental observation to date 

seeds

e-
aq is a powerful 

reducing agent for 
the cytotoxic HO·
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